
COGNITIVE NEUROSCIENCE

Communication before coherence

Edmund T. Rolls,1,2 Tristan J. Webb3 and Gustavo Deco4

1Oxford Centre for Computational Neuroscience, Oxford, UK
2Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
3Department of Computer Science and Complexity Science Centre, University of Warwick, Coventry, UK
4Theoretical and Computational Neuroscience, Universitat Pompeu Fabra, Barcelona, Spain

Keywords: communication through coherence, decision-making, information transmission, oscillations, synchrony

Abstract

The hypothesis of communication through coherence proposes that coherent or synchronous oscillations in connected neural
systems can promote communication. It has been applied mainly to how oscillations interact in connected networks. We tested by
simulations whether information transmission about an external stimulus from one network to a second network is influenced by
gamma oscillations, by whether the oscillations are coherent, and by their phase. Gamma oscillations were induced by increasing the
relative conductance of AMPA to NMDA excitatory synapses. It was found that small associative connection strengths between the
networks were sufficient to produce information transmission (measured by Shannon mutual information) such that the second
attractor network took the correct decision based on the state of the first network. Although gamma oscillations were present in both
networks, the synaptic connections sufficient for perfect information transmission about the stimulus presented to the network (100%
correct, 1 bit of information) were insufficiently strong to produce coherence, or phase-locking, between the two networks; this only
occurred when the synaptic strengths between the networks were increased by > 10 ·. Further, the phase of the oscillations between
the networks did not influence the information transmission or its speed at these connection strengths. Moreover, information
transmission was as good when the AMPA-to-NMDA ratio was reduced to its normal value, and oscillations were not present. Similar
results were found when the second network was not an attractor decision-making network. Thus information transmission can occur
before synapses have been made sufficiently strong to produce coherence.

Introduction

Gamma-band synchronization has been found in many cortical areas
and in a variety of tasks. It has been studied most extensively in the
visual cortex of cats and monkeys (Gray et al., 1989; Fries et al.,
2001, 2008; Womelsdorf et al., 2006, 2007). Several authors have
proposed that these synchronizations influence the interactions among
neuronal groups (Salinas & Sejnowski, 2001; Varela et al., 2001), a
hypothesis referred to as communication through coherence (CTC;
Fries, 2005, 2009).

Buehlmann & Deco (2010) set up a test of the hypothesis by
modelling two interconnected integrate-and-fire neuronal networks.
Both were attractor decision-making networks (Wang, 2002, 2008;
Rolls & Deco, 2010). The first network could connect to the second by
forward connections to the second, and, to model the situation in the
cerebral neocortex, there were also backprojections, typically set to be
one-third of the value of the forward connections. They were able to
induce gamma oscillations in the range 50–70 Hz in both networks by
increasing the conductance of the short time-constant (2 ms) AMPA
receptor-activated channels relative to the long time-constant (100 ms)
NMDA receptor-activated ion channels. They measured effects of one
network on the other using transfer entropy (analogous to Granger

causality –Granger, 1969;Ding et al., 2006;Ge et al., 2012)which uses
time differences between the networks tomeasure influence. They found
effects with the transfer entropy measure, but this reflected the fact that
oscillations in the networkswere influencing each other, not information
transmission about an external event or stimulus through the system.
Here, we performed a different experiment in which an external

stimulus applied to one of two decision-making neuronal populations
or pools of neurons could encourage the first network to take a
decision, in which one decision pool reached a higher firing rate than
the other population. We note that differences in firing rates between
different neurons are part of the normal representation of information
in cortical areas including the inferior temporal visual cortex,
hippocampus, orbitofrontal cortex, anterior cingulate cortex and
insular taste cortex (Rolls & Treves, 2011), so we are investigating
a biologically realistic situation, to test whether in this situation
coherence makes an important contribution to information transmis-
sion between coupled networks. We measured how the decisions
taken by the second network depended on how strong the connections
were from the first to the second network. In this way we were able to
measure the information transmission, using Shannon information
theory (Cover & Thomas, 1991; Rolls & Treves, 2011), to assess what
information was transmitted from the first to the second network, and
also the percentage correct performance of the second network. We
measured how this depended on whether there were oscillations in
both of the networks (by altering the gAMPA to gNMDA ratio), and we
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were also able to measure whether the transmitted information
depended on or was influenced by whether the networks were
coherent, and were phase-locked into synchrony. We were able to do
this not only by measuring the neuronal spiking but also by measuring
the synaptically activated currents in the neurons, which provides a
surrogate measure of the local field potentials which are believed to be
generated by these currents (Mazzoni et al., 2008). We also extended
the findings to connected networks in which the second network was
not an attractor decision-making network, but in which its firing rates
reflected the state of the first network and thus of the stimulus that had
been presented to the first network.

Materials and methods

The network used to investigate information transmission

The network model consists of two parts (Fig. 1). Network 1 (Net 1 or
N1) is an attractor decision-making network that receives an external
input k1 at time = 1000 ms that makes decision neuronal population 1
(decision pool 1; D1) win with a latency of �500 ms. Pool N1D1 is
connected to Network 2 (Net 2) decision pool 1 (N2D1) with forward
synaptic connection strengths xf and backward synaptic connection
strengths xb. xb was set to be 1 ⁄ 3 of the value of xf, as the forward
connections are stronger in the brain (Rolls, 2008b; Section 1.11, pp
31–36), and because this ratio was found by Buehlmann & Deco
(2010) to be effective in enhancing coherent oscillations. In a
corresponding way pool N1D2 is connected to Network 2 decision
pool 2 (N2D2) with forward and backward connection strengths that
are the same as those for the D1 pools (see Fig. 1, and Table 2 for a
complete specification of all the connections in the network; these
correspond to those used by Buehlmann & Deco, 2010). Both Net 1
and Net 2 were set up to have gamma oscillations by increasing the
gAMPA to gNMDA factor (defined below as d) to a value of 0.1. (The
short time constant of the AMPA receptors promotes oscillations,
which are normally weak or absent at the normal ratio of NMDA to
AMPA that we use as shown in Table 1 (Rolls & Deco, 2010;
Buehlmann & Deco, 2010).)

To enable Net 1 to have gamma oscillations, we modelled it as an
attractor decision-making network with the NMDA-to-AMPA conduc-
tance ratio reduced as described elsewhere. The architecture and
operation of Net 1 were essentially similar to those of Net 2. Thus they
oscillated in approximately the same way, and this enabled us to test,
when they were oscillating and had the same generic architecture and
underlying dynamics, whether coherence of the oscillations influenced
the information transfer. With respect to Net 2, it was set up using a
mean field analysis (Wang, 2002; Deco & Rolls, 2006; Rolls & Deco,
2010) so that it operated as an attractor network for almost all of the
investigations reported. However, just to double check that the same
generic results were obtained when Net 2 was not an attractor network,
we reduced x+ in Net 2 for the experiment shown in Fig. 10.
The plan of the investigations was to increase the values of the

connecting weights (xf and xb, and those that were scaled by these
values as defined in section Implementation of the integrate-and-fire
attractor neuronal network model of information transmission)
between N1D1 and N2D1 from 0 upwards, to determine when
N2D1 started to take the correct decision, and to examine how
extensive measures of coherence, phase, and synchrony between the
two networks were related to the amount of information transmitted, to
the percentage correct of Net 2, and to the latency of the decision in
Net 2. The communication through coherence (CTC) hypothesis holds
that communication is facilitated by coherence (Fries, 2005, 2009).
The communication between Net 1 and Net 2 was measured in the
present investigations by the information transmitted between the
networks, by the percentage correct of the second network, and by the
latency of a correct response in Net 2. The advantage to testing this by
simulation is that we have precise control over all the parameters that
influence the operation of the system, and we can measure all the
properties of the system. The aim was to show whether, in this well
defined situation, information transmission was facilitated by coher-
ence in the gamma frequency range. Indeed, to make the results
relevant to understanding cortical function, the model we investigated
is an integrate-and-fire model with spiking neurons and dynamically
modelled synapses, as described in detail in other parts of Materials
and methods and elsewhere (Rolls & Deco, 2010).

Fig. 1. Schematic representation of the network. The network consists of two connected attractor decision-making nets, Net 1 and Net 2. There are feedforward
(xf) and feedback (xb) connections between Net 1 and Net 2. Inputs are applied to Net 1 k1 and k2, which takes a decision with Net 1 decision pool 1 (N1D1)
winning. Through the connections (xf) Net 2 pool D1 is encouraged to win the competition in Net 2. The network allows information transmission from Net 1 to
influence the decision made by Net 2 to be investigated, to determine how it is influenced by the connection strength (xf) and whether there are oscillations in both
Nets 1 and 2, which may or may not be coherent. There are external inputs (kext) to simulate the spontaneous activity being received from other neurons in the
system. Each decision pool has strong recurrent connection strengths (x+) to enable the pool to act as part of an attractor decision-making net. The strengths of the
other synapses are shown, and are described in the text.
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The integrate-and-fire network is modelled using the general
framework, described elsewhere, which has a mean-field equivalent
(Brunel & Wang, 2001; Wang, 2002; Deco & Rolls, 2006; Rolls &
Deco, 2010). The external input kext is a Poisson spike train that
connects independently to all neurons in the network via 800 synapses
onto each neuron, each reflecting firing at 3 Hz to simulate the effect
of spontaneous activity in the cortex. The network is fully connected
and has recurrent collateral synapses within Net 1 and Net 2 that are
separate. Net 1 and Net 2 have separate populations of inhibitory
neurons to ensure that the networks can oscillate separately if the
weights xf and xb are zero.

Gamma oscillations in a network with excitatory and inhibitory
neurons are generated through a pyramidal–interneuron feedback loop
(Traub et al., 1997; Brunel & Wang, 2003). Pyramidal neurons excite
interneurons, and interneurons in turn send inhibition back onto
pyramidal cells. The population frequency is determined by the sum of
excitatory and inhibitory lags. The recurrent excitatory connections
tend to decrease the oscillation frequency (as compared to only
excitatory–inhibitory and inhibitory–excitatory connections) as they
tend to prolong the positive phase in each cycle. In our network we can
therefore generate and control the oscillations in the gamma frequency-
band by adjusting the AMPA and NMDA receptor-activated conduc-
tances (gAMPA and gNMDA). For example, increasing gAMPA and
decreasing gNMDA shifts the balance in the network towards fast
excitation (AMPA) and slow inhibition (GABA) and thus increases the
gamma frequency-band oscillations. The conductances in our network
were varied according to the following rule: gNMDA = gNMDA (1)d)
and gAMPA = gAMPA(1 + 10d). We refer to the parameter d as the
gAMPA ⁄ gNMDA modification ratio. The factor 10 stems from the fact
that near the firing threshold the ratio of NMDA : AMPA components
becomes 10 in terms of charge entry, as stated in Brunel & Wang

(2001). Therefore, in order not to change the spontaneous firing rate
state, a decrease in gNMDA is compensated by a ten-fold increase in
gAMPA. All recurrent conductances (both inhibitory and excitatory)
were modified according to this rule. Both Net 1 and Net 2 were set up
to have gamma oscillations by altering the AMPA to NMDA ratio
modification factor d from its default value of 0 for the NMDA case to a
value of 0.1 for the AMPA case, with the normal default values for the
gAMPA and gNMDA conductances shown in Table 1, as this alteration
has been shown to produce good gamma oscillations in this network
(Buehlmann & Deco, 2010). We refer to the default conductances
shown in Table 1 as the NMDA case, and to the d = 0.1 ratio
modification factor case, where the gAMPA is doubled and the gNMDA is
reduced to 0.9 of the values shown in Table 1, as the AMPA case.

Implementation of the integrate-and-fire attractor neuronal
network model of information transmission

The probabilistic decision-making network we used is a spiking
neuronal network model with a mean-field equivalent (Wang, 2002),
but instead set to operate with parameters determined by a mean-field
analysis that ensures that the spontaneous firing rate state is stable even
when the decision cues are applied, so that it is only the noise that
provokes a transition to a high firing rate attractor state (Deco et al.,
2012), allowing the effects of the noise to be clearly measured (Deco &
Rolls, 2006; Rolls & Deco, 2010; Deco et al., 2012). The reasons for
using this particular integrate-and-fire spiking attractor network model
are (i) that this is an established model with a mean-field equivalent
allowing mathematical analysis, (ii) that many studies of short-term
memory, decision-making and attention have been performed with this
modelwhich capturesmany aspects of experimental data (in a number of
cases because, for example, NMDA receptors are included) and (iii) that

Table 1. The default parameter set used in the integrate-and-fire simulations

Global constants
VL = –70 mV Vthr = –50 mV Vreset = –55 mV VI = –70 mV
VE = 0 mV a = 0.5 ⁄ ms

Inhibitory neuron constants
Cm = 0.2 nF gm = 20 nS srp = 1 ms sm = 10 ms
gAMPA,ext = 1.62 nS gAMPA,rec = 0.081 nS gNMDA = 0.258 nS gGABA = 0.973 nS
sAMPA = 2 ms sNMDA,decay = 100 ms sNMDA,rise = 2 ms sGABA = 10 ms

Excitatory neuron constants
Cm = 0.5 nF gm = 25 nS srp = 2 ms sm = 20 ms
gAMPA,ext = 2.08 nS gAMPA,rec = 0.104 nS gNMDA = 0.327 nS gGABA = 1.2875 nS
sAMPA = 2 ms sNMDA,decay = 100 ms sNMDA,rise = 2 ms sGABA = 10 ms

Network parameters
x+ = 2.1 x) = 0.877 xI = 0.877 xb ⁄ xf = 1 ⁄ 3
NE = 800 NI = 200 Next = 800 kext = 3.0 Hz ⁄ synapse

Table 2. Synaptic connection strengths between the different pools D1, D2, NS and Inh in Net 1 (N1) and Net 2 (N2)

N1 NS N1 Inh N1 D1 N1 D2 N2 NS N2 Inh N2 D1 N2 D2

N1 NS 1 1 1 1 0 0 0 0
N1 Inh 1 1 1 1 0 0 0 0
N1 D1 x) 1 x+ x) 0 0 xf xfw

N1 D2 x) 1 x) x+ 0 0 xfw xf
N2 NS 0 0 0 0 1 1 1 1
N2 Inh 0 0 0 0 1 1 1 1
N2 D1 0 0 xb xbw x) 1 x+ x)
N2 D2 0 0 xbw xb x) 1 x) x+

The strengths are read from row to column. NS, nonspecific excitatory; Inh, inhibitory.
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it captures many aspects of cortical dynamics well (Brunel & Wang,
2001;Wang, 2002, 2008; Deco & Rolls, 2005b, 2006; Loh et al., 2007;
Buehlmann & Deco, 2008; Rolls et al., 2008, 2010a,b; Rolls & Deco,
2010; Smerieri et al., 2010).
Each separate attractor network is fully connected and consists of

separate populations of excitatory and inhibitory neurons as shown in
Fig. 1. Two subpopulations of the excitatory neurons are referred to
as decision pools, ‘D1’ and ‘D2’. The decision pools each encode a
decision to one of the stimuli, and receive as decision-related inputs
for example k1 and k2 for Net 1 (Fig. 1). The remaining excitatory
neurons are called the ‘nonspecific’ neurons, and do not respond to
the decision-making stimuli used, but do allow a given sparseness of
the representation of the decision-attractors to be achieved. These
neurons might in the brain respond to different stimuli, decisions or
memories.
A description of the network follows, and we further provide a

description according to the recommendations of Nordlie et al. (2009)
in Data S1.
In our simulations, each net contained N = 1000 neurons, with

NE = 0.8 N excitatory neurons, and NI = 0.2 N inhibitory neurons.
The two decision pools are equal-sized subpopulations with the
proportion of the excitatory neurons in a decision pool, or the
sparseness of the representation with binary encoding, f = 0.1,
resulting in the number of neurons in a decision pool NE f = 80.
The neuron pools are non-overlapping, meaning that the neurons in
each pool belong to one pool only.
We structured the network by establishing the strength of interac-

tions between pools to take values that could occur through a process
of associative long-term potentiation and long-term depression.
Neurons that respond to the same stimulus, or in other words ones
that are in the same decision pool, will have stronger connections. The
connection strength between neurons will be weaker if they respond to
different stimuli. The synaptic weights are set effectively by the
presynaptic and postsynaptic firing rates reflecting associative con-
nectivity (Rolls, 2008b). Neurons in the same decision pool are
connected to each other with a strong average weight x+, and are
connected to neurons in the other excitatory pools with a weak average
weight x). All other synaptic weights within a pool are set to unity.
Using a mean-field analysis (Deco & Rolls, 2006), we chose x+ to be
2.1 and x) to be 0.877 to achieve a stable spontaneous state (in the
absence of noise) even when the decision cues were being applied, and
stable high firing-rate decision states. In particular, w� ¼ 0:8� fD1wþ
=0:8� fD1 where fD1 is the fraction of neurons in a specific excitatory
decision-making pool such as pool D1, and in our case is 0.08 (Brunel
& Wang, 2001; Wang, 2002; Deco & Rolls, 2006; Loh et al., 2007;
Rolls & Deco, 2010).
The connection strengths between the two networks are included in

Table 2, which provides a complete specification of all the connection
strengths in the network. The D1 pools of the two networks are
connected by strengths of xf. The same values were used for the
connection strengths between the D2 pools of the two networks. This
value was altered parametrically as part of the investigations
described here. The corresponding backward connections xb were
always set to 1 ⁄ 3 of this value to reflect the anatomy of the
connectivity (Rolls, 2008b; Section 1.11, pp 31–36). In addition, the
D1 and the D2 pools in the first and second networks had weaker
connection strengths of xfw in the forward direction, and 1 ⁄ 3 of this
in the backward direction xbw, scaled to be 1 ⁄ 10 of the value of the
connections xf and xb respectively to model the weak connections
expected as a result of associative learning between the non-
corresponding pools in two connected networks, following exactly
Buehlmann & Deco (2010).

Neuron model

Neurons in our network use integrate-and-fire dynamics (Knight,
2000; Brunel & Wang, 2001; Wang, 2002; Burkitt, 2006; Deco &
Rolls, 2006; Rolls & Deco, 2010) to describe the membrane potential
of neurons. We chose biologically realistic constants to obtain firing
rates that are similar to experimental measurements of actual neural
activity. Integrate-and-fire neurons integrate synaptic current into a
membrane potential, and then fire when the membrane potential
reaches a voltage threshold. The equation that governs the membrane
potential of a neuron Vi is given by

Cm
dViðtÞ

dt
¼ �gmðViðtÞ � VLÞ � IsynðtÞ; ð1Þ

where Cm is the membrane capacitance, gm is the leak conductance, VL

is the leak reversal potential and Isyn is the total synaptic input. A spike
is produced by a neuron when its membrane potential exceeds a
threshold Vthr = )50 mV and its membrane potential is reset to a value
Vreset = )55 mV. Neurons are held at Vreset for a refractory period srp
immediately following a spike.

Synapses

The synaptic current flowing into each neuron is described in terms of
neurotransmitter components. The four families of receptors used were
GABA, NMDA, AMPArec (from the recurrent collateral connections)
and AMPAext (from external connections). The neurotransmitters
released from a presynaptic excitatory neuron act through AMPA and
NMDA receptors, while inhibitory neurons activate ion channels
through GABA receptors. Each neuron in the network has Cext = 800
external synapses that deliver input information and background
spontaneous firing from other parts of the brain. Each neuron receives
via each of these 800 synaptic external inputs a spike train modelled
by a Poisson process with rate 3.0 Hz, making the total external input
2400 Hz per neuron.
The synaptic current is given by a sum of glutamatergic-, AMPA

(IAMPA,rec)- and NMDA (INMDA,rec)-mediated currents from the
excitatory recurrent collateral connections, an AMPA (IAMPA,ext)-
mediated external excitatory current and an inhibitory GABAergic
current (IGABA):

IsynðtÞ ¼ IAMPA;extðtÞ þ IAMPA;recðtÞ þ INMDA;recðtÞ þ IGABAðtÞ ð2Þ

in which

IAMPA;extðtÞ ¼ gAMPA;extðV ðtÞ � VEÞ
XCext

j¼1
SAMPA;ext

j ðtÞ ð3Þ

IAMPA;recðtÞ ¼ gAMPA;recðV ðtÞ � VEÞ
XCE

j¼1
wjS

AMPA;rec
j ðtÞ ð4Þ

INMDA;recðtÞ ¼
gNMDAðV ðtÞ � VEÞ

1þ ½Mgþþ� expð�0:062V ðtÞÞ=3:57�
XCE

j¼1
wjsNMDA

j ðtÞ

ð5Þ

IGABAðtÞ ¼ gGABAðV ðtÞ � VIÞ
XCI

j¼1
sGABAj ðtÞ; ð6Þ

where VE and VI are reversal potentials for excitatory and inhibitory
PSPs, the g terms represent synaptic conductances, sj are the fractions
of open synaptically activated ion channels at synapse j, and weights
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xj represent the structure of the synaptic connections. (The index j
above refers to different synapses, external, recurrent, AMPA,
NMDA, GABA etc. as indicated.)

Postsynaptic potentials are generated by the opening of channels
triggered by the action potential of the presynaptic neuron. As
mentioned above, the dynamics of these synaptically activated ion
channels are described by the gating variables sj. The dynamics of
these variables are given by

dsAMPA
j ðtÞ

dt
¼ �

sAMPA
j ðtÞ
sAMPA

þ
X

k

dðt � tk
j Þ ð7Þ

dsNMDA
j ðtÞ

dt
¼ �

sNMDA
j ðtÞ

sNMDA;decay
þ axjðtÞð1� sNMDA

j ðtÞÞ ð8Þ

dxjðtÞ
dt
¼ � xjðtÞ

sNMDA;rise
þ
X

k

dðt � tk
j Þ ð9Þ

dsGABAj ðtÞ
dt

¼ �
sGABAj ðtÞ
sGABA

þ
X

k

dðt � tk
j Þ ð10Þ

where the sums over k represent a sum over spikes formulated as
d-Peaks (d(t)) emitted by presynaptic neuron j at time tk

j .
The constants used in the simulations are shown in Table 1.

Simulation regime

The network was simulated numerically using a second order Runge–
Kutta algorithm step with an integration step dt = 0.02 ms for a time
period of 4 s. First there was a 1-s baseline period of spontaneous
activity in which kext = 3.0 Hz for each of the 800 external synapses
onto each neuron. At time = 1000 ms there was then a 3-s decision
period in which the decision stimuli were applied by increasing the
firing rates in Net 1 for the 800 external input synapses on each of the
neurons in the two decision pools to k1 = 3.11 Hz and k2 = 2.99 Hz.
This caused Net 1 to reliably enter a decision attractor with pool 1
winning, and firing at a high firing rate with a typical latency of
500 ms. Also at time = 1000 ms, for Net 2 k3 and k4 were increased
to 3.06 Hz, to facilitate the making of a decision in Net 2. Which
decision was made in Net 2 was influenced by the firing in Net 1
pool 1 and by the net interconnection weights xf and xb between
pools N1D1 and N2D2 (see Fig. 1). If the interconnection weights
were zero, the parameters were such that a decision was eventually
taken in Net 2, but the decision was at chance. This equal and small
increase in k3 and k4 can be thought of as a nonspecific contribution to
the input to Net 2, which is sometimes found in the cortex (but not
typically in the inferior temporal visual cortex, the insular taste cortex,
the orbitofrontal cortex, the cingulate cortex or the hippocampus;
Rolls & Treves, 2011; Rolls, 2008b) and is sometimes modelled
(Wang, 2002; Albantakis & Deco, 2009).

During the decision period, the noise in the network, and the increased
firing rate bias functioning as a decision cue to each decision pool of
neurons, causes one of the decision populations of neurons to jump to a
high firing rate attractor state with the assistance of the positive feedback
in the recurrent collaterals. This high firing inhibits, through the
inhibitory interneurons, the other decision population of neurons. There
is thus a single winning population on each trial, and which of the two
populations wins on a particular trial is determined by the statistical
fluctuations in the firing rates of the neurons in each decision population.

Analyses

Spectral analyses

We performed spectral analyses as described by Bendat & Piersol
(2010) to analyse the oscillations and possible synchrony in the
network. The analyses are described using their notation, and were
implemented in matlab (version 2010a) using the cpsd function with
the default values for the windowing and data sections to ensure that
reliable averaged estimates were obtained on single trials. (We do not
show ^ symbols in the following to simplify the notation, as these
averages were always used.) The number of points in the fast Fourier
transform was set for the analyses described to 256, and we checked
carefully that the magnitudes and phases obtained were not altered if
smaller values of 128 or 64 were used. The data for each analysis
consisted of 512 ms of local field potential (LFP) data (defined below)
with 1-ms spacing. The data were obtained on each trial in a time
period that started 12 ms before the decision in Net 2, unless
otherwise stated (as oscillations were not present in Net 2 before this
time, and this time was when the decision was being made). The
finding that gamma oscillations are not present during spontaneous
firing, and only start in Net 2 when the neurons increase their firing
rates, is illustrated by the single-trial type of analysis shown in Fig. 4.
However, when the Net 2 D1 neurons selectively increase their firing
rates, the decision has effectively been taken; that is, the bifurcation
has been crossed. This is one of the implications of the investigations
described here – great care has to be taken using single-trial analyses
with neurophysiological data to measure exactly when the gamma
oscillations start, and also when any synchrony starts that may be
present, in relation to the time of the decision or more generally of the
information transmission.
We computed the power spectral density (PSD) [Gx( f ) for Net 1

Pool 1, and Gy( f )] for the winning pool in Net 2. We computed the
cross-spectral density [Gxy( f ) = Cxy( f ) ) jQxy( f )], where the real part
Cxy( f ) is the coincident spectral density function, and the imaginary
part Qxy( f ) is the quadrature spectral density function. In the graphs
we plot the magnitude of the cross-spectral density magnitude (CSM),
|Gxy( f )|, as

Gxyðf Þ
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
xyðf Þ þ Q2

xyðf Þ
q

ð11Þ

and the phase as

hxyðf Þ ¼ tan�1
Qxyðf Þ
Cxyðf Þ

� �
: ð12Þ

We note that synchrony is a state in which there is a fixed phase in
the activity of the two systems (e.g. neural populations), that is, when
they are phase-locked. (The phase-locking need not be at zero
phase.)
The coherence was calculated as

c2xy ¼
Gxyðf Þ
�� ��2

Gxðf ÞGyðf Þ
: ð13Þ

This makes it clear that one can define an un-normalized coherence
measure as the square of the magnitude of the cross-spectral
magnitude, i.e. as Gxyðf Þ

�� ��2.
The above analyses provided the quantitative data for the

conclusions reached. However, to visualise the time-course of the
spectral changes within a trial, to help determine the time within a
trial in which to perform the spectral analyses just described, we
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also utilized Slepian multi-taper methods for spectrograms
(i.e. spectral estimation as a function of time) (Fries et al., 2008;
Mazzoni et al., 2008). We used an optimal family of orthogonal
tapers given by the discrete prolate spheroid sequences (Slepian
functions) as described elsewhere (Fries et al., 2008; Mazzoni
et al., 2008), building on the matlab implementation of Partha
Mitra modified by Ken Harris and made available under the GNU
GPL at http://neuromat.googlecode.com/svn/trunk/spikeMat/tools.ext/.
The length of the moving window was 256 ms. Examples are
shown in Figs 4 and 11.

Spike-triggered average (STA) and cross-STA

We calculated the STA of the LFP within a network, as this is found
neurophysiologically to be a sensitive measure of oscillations. We
also calculated the cross-STA between for example the spikes in
Net 1 D1 and the LFP in Net 2 D1, as the cross-STA is a sensitive
measure of synchrony between neuronal populations (Gregoriou
et al., 2009).
STAs were calculated by averaging LFP segments ±50 ms around

every recorded spike. This was calculated in the same 512-ms time
window used for the spectral analyses. To display more clearly the
average relative phase of spikes, the STA was smoothed with a 5-point
smooth. The cross-STA was calculated in an analogous way. The
surrogate for the LFP was the sum of the absolute values of the AMPA
and GABA currents into a neuron in the pool being considered
(averaged across all the neurons in the pool), as the LFPs are thought
to reflect currents such as these (Mazzoni et al., 2008). We checked
that the conclusions were not affected if the absolute values of the
NMDA currents were included as well.
The neuronal firing rates for each neuronal population were

calculated as the average across a population of the firing rate in
50-ms sliding bins.

Mutual information analyses

The information transmission from Net 1 (pool N1D1) to Net 2 (pool
N2D1) was measured by the Shannon mutual information, as
described in more detail elsewhere (Rolls, 2008b; Rolls & Treves,
2011). In the simulations where we have an attractor state reached in
Net 2 (measured by the firing rates being 10 spikes ⁄ s higher in one of
the decision pools than the other in a 500-ms period starting at the time
when the firing rates diverged in N2D1 and N2D2), we can measure
the mutual information between the stimulus s applied to Net 1, and
the attractor state reached in Net 2, which we denote as s¢. In Net 1,
the attractor that wins (pool D1 or D2) was set to be D1 by setting
input stimulus k1 to 3.11 and k2 to 2.99 Hz per external synapse (at the
end of the spontaneous firing period in which both had been 3.00 Hz
per external synapse), where there are Next = 800 synapses per
neuron). For Net 2, information transmission is good when N2D1
enters a high firing rate attractor state s¢ = 1 when s is 1. We measure
the mutual information between the input stimuli s and the state
reached in Net 2, s¢.
More formally, we define the stimuli or symbols in N1D1 as s

drawn from the set S, and in N2D1 as s¢ drawn from the set S¢. Prior to
reception of s¢, the probability of the input symbol s was P(s). This is
the a priori probability of s. After reception of s¢, the probability that
the input symbol was s becomes P(s|s¢), the conditional probability
that s was sent given that s¢ was received. This is the a posteriori
probability of s. The difference between the a priori and a posteriori
uncertainties measures the gain of information due to the reception of
s¢. Once averaged across the values of both symbols s and s¢, this is the
mutual information

IðS; S0Þ ¼
X
s;s0

P ðs; s0Þflog2½1=PðsÞ� � log2½1=P ðsjs0Þ�g ð14Þ

¼
X
s;s0

Pðs; s0Þ log2½P ðsjs0Þ=P ðsÞ�: ð15Þ

matlab routines in the Information Theory Toolbox v1.0 were
used (http://www.mathworks.com/matlabcentral/fileexchange/17993-
information-theory-toolbox-v1-0). The decision time was measured
on each trial as the difference in the latency for Net 1 to reach its
attractor state and Net 2 to reach its attractor state. The criterion for
being in an attractor state was that the firing rate in one of the decision
pools (D1 vs. D2) had to be > 10 spikes ⁄ s on average for each neuron
than in the other pool, in a 500-ms period.
In the simulations where we set the parameters so that a high firing

rate attractor state was not reached in Net 2 (x2+ = 1.3), the mutual
information between the stimulus s within the set S applied to Net 1
and the firing rates r from the set R in Net 2 of N2D1 and N2D2 was
measured in the manner described in detail elsewhere (Rolls et al.,
1997b; Rolls, 2008b; Rolls & Treves, 2011) as follows – I(S:R)

IðS;RÞ ¼
X
s;r

Pðs; rÞlog2
Pðs; rÞ

P ðsÞPðrÞ : ð16Þ

The analytic bias correction procedure (Treves & Panzeri, 1995;
Panzeri & Treves, 1996) was applied as normal (Rolls et al., 1997b).
For these simulations where there was no attractor in Net 2, we also

used a decoding procedure (described in detail elsewhere; Rolls et al.,
1997a; Rolls, 2008b; Rolls & Treves, 2011) whereby the firing rate in
N2D1 vs. N2D2 on each trial was used to effectively identify the most
likely stimulus s¢ which had been presented to the network. s¢ was
decoded as 1 if the firing rate of N2D1 was higher than N2D2, and as
2 of the firing rate of N2D2 was higher than N2D1. The information
was measured using Eqn 15. The firing rate in this case was measured
in a 500-ms period of 1500–2000 ms on each trial, that is, starting at
the time that Net 1 was in its high firing rate attractor state for pool
N1D1, allowing the influence of this on the firing rates of pools N2D1
and N2D2 to be measured. This is maximum likelihood decoding
(Rolls et al., 1997a; Rolls, 2008b; Rolls & Treves, 2011), and allows
the percentage correct to be measured (in this case as the percentage of
trials on which Net 2 was in a corresponding state to that in Net 1).
The latency of the response in Net 2 was measured in this case by the
first bin in which a running t-test with 10 bins each of 50 ms of firing
rates from N2D1 and N2D2 first became significant (P < 0.05), minus
the actual time on that trial at which Net 1 reached its decision. The
decoded information measure can be high because the estimated
stimulus s¢ on each trial can be decoded based on which pool, N2D1 or
N2D2, has a higher rate on that particular trial, independently of any
small fluctuations in the average firing rate from trial to trial. In
contrast, measuring the information from Eqn 16 gives smaller values
in the present application, because it utilizes probability distributions
assessed over many trials, and thus reflects the trial-by-trial variability
in the average values of the firing rates on different trials measured
within a given time window.

Transfer entropy

One measure of the mutual influence between two neuronal groups is
quantified as the Spearman rank correlation coefficient of the spectral
power in the gamma range (50–80 Hz for our simulations) in the two
groups (Womelsdorf et al., 2007). We measured this, and found
similar correlations, with a peak at 0 phase lag, to those described by
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Buehlmann & Deco (2010) with xf = 0.45. An interpretation is that
the oscillations are stronger in the two networks when they are in
phase.

The Spearman rank correlation is a nonparametric measure of
correlation which makes no assumptions about normality or linearity
of the data. However, it is a symmetric measure and therefore fails to
measure directionality of the flow of influence. To overcome this
limitation we also use transfer entropy (Schreiber, 2000), which
enables us to distinguish between shared and transported information.
Transfer entropy measures the deviation from the following general-
ized Markov property:

pðxtþ1jxk
t Þ ¼ pðxtþ1jxk

t ; y
l � tÞ; ð17Þ

where p is the transition probability and k and l are the dimensions of
the delay vectors. xt and yt are the time series of the signal. We write xt
and yt instead of x(t) and y(t), respectively, for better readability. If the
deviation is small, then Y has no relevance for the transmission
probability of X. The incorrectness of this assumption can be
quantified by the Kullback entropy

Ty!x ¼
X

t

pðxtþ1; xk
t ; y

l
t Þ log2

pðxtþ1jxk
t ; y

l
t Þ

pðxtþ1jxk
t Þ

: ð18Þ

In other words, transfer entropy represents the information about a
future observation of variable xt obtained from the simultaneous
observation of past values of both xt and yt, after discarding the
information about the future of xt obtained from the past of xt alone
(Ishiguro et al., 2008). For computational reasons, we set k = l = 1.
The conditional probabilities required in Eqn 18 were calculated from
the joint probabilities. We approximate the joint probabilities by
coarse-graining the continuous state space at resolution r and using the
histograms of the embedding vector (naive histogram technique;
Lungarella et al., 2007).

When the available data are limited (number of samples N < 500)
and the coupling between the time series is small, transfer entropy
suffers from a finite-sample effect, in particular for small resolution
(r < 0.05), which makes the assessment of the significance of the
obtained values difficult (Lungarella et al., 2007). However, for all our
simulations N = 512 and r > 0.05, so we can assume that the finite-
sample issue affects our results only to a minor extent. We present raw
values of the transfer entropy calculated in this way, but estimated the
correction needed based on transfer entropy measures in unconnected
oscillating networks. The value was 0.16 bits, and this may be
subtracted as a correction from the values reported in this paper. We
note that transfer entropy is similar in its intent to Granger causality
analysis (Ishiguro et al., 2008; Ge et al., 2012). We calculated the
transfer entropy between the multiple neuron activity (MUA; see next)
in the two neuronal pools.

From our spiking simulations we calculated the multi-unit activity
(MUA) to analyze our simulations, in order to be able to compare our
results directly with neurophysiological experiments. To simulate the
MUA, we used the 80 neurons in each of the selective pools. This
point process data was converted to a time series by binning the spikes
in windows of 5 ms. The binning window was shifted in steps of
1 ms. The time-series was then normalized to zero mean and unit
variance. We use the normalized time-series to estimate the transfer
entropy and power spectrum. Normalization was applied to rule out
the possible influence of rate changes on these two measures. Both
measures were made in a 512-ms window starting at the time that the
decision was made in Net 2.

The transfer entropy analyses provide evidence on influences of the
oscillations in Net 1 on Net 2 and vice versa. This is possible because
the time window is short, 5 ms. The transfer entropy analyses do not
measure how the information about which stimulus was presented to
Net 1 is reflected in the decision made by Net 2, which instead is
measured by the Shannon Information measures described above
(Eqns 15 and 16) which measures whether N2D1 or N2D2 enters a
high firing rate attractor state (and that is measured by whether the
firing rates of N2D1 are greater than those of N2D2 or vice versa by
10 spikes ⁄ s on average for each neuron in a pool during a 500-ms
period).

Results

Information transmission between two coupled networks

A single trial of a simulation for the AMPA case (prone to gamma
oscillations) is shown in Fig. 2 to illustrate the information transmis-
sion from Net 1 to Net 2. This illustrates that after a 1-s period of
spontaneous activity, the decision cues were applied to Net 1, which
took the correct decision that Net 1 should win, with a latency of
�400 ms. The forward connection weights xf from pool N1D1 to
pool N2D1 in this case were 0.03, and these were sufficiently strong
for information to be transmitted to Net 2 pool D1 (N2D1) and for it
then to win the competition in Net 2 and enter a decision attractor state
with a high firing rate. Figure 2B shows the average (over 50 ms) of
the firing rates of the neurons in the D1 pools of both networks. (The
rapid increase in rate from a mean of 3 spikes ⁄ s in the spontaneous
period to �75 spikes ⁄ s when a decision has been made illustrates that
an increase by 10 spikes ⁄ s from the spontaneous rate is a good
criterion for a decision.) The spiking nature of the activity is illustrated
in the rastergrams in Fig. 2A. The spectral analyses for the same trial
are illustrated in Fig. 2C. The PSD for the local field potential in Net 1
D1 showed that there is no gamma activity in the spontaneous period,
when the mean firing rates of the neurons in the excitatory neuron
pools is 3 spikes ⁄ s. The power spectral density only increased in the
gamma band when the D1 neurons started to fire with high firing rates
in response to their inputs, reflecting what is found neurophysiolog-
ically (Fries et al., 2008). Similarly, the PSD for the local field
potential in Net 2 D1 showed that there is no gamma activity in the
spontaneous period, when the mean firing rates of the neurons in the
excitatory neuron pools is 3 spikes ⁄ s. The power spectral density only
increased in the gamma band when the Net 2 D1 neurons started to
fire with high firing rates in response to the inputs received from
Net 1. This immediately raises a fundamental question – how could
oscillations contribute to the information transmission if they do not
become established until information transmission has increased the
firing rates? Next, Fig. 2C shows that the coherence between the
N1D1 and N2D1 populations remained low throughout the trial. This
indicates that although both N1D1 and N2D1 had gamma oscillations
when their firing rates were high (as shown by their PSDs), the
oscillations were without any fixed phase relationship. (A case for
comparison which does show coherence building up is in Fig. 3A, the
AMPA case with xf = 0.45.) Similarly, the phaseogram at the bottom
of Fig. 2C also shows no fixed phase in the gamma band between the
gamma oscillations in N1D1 and N2D1. (Again, a case for comparison
which does show phase-locking is in Fig. 3A, the AMPA case with
xf = 0.45.) The generic results shown in Fig. 2 are prototypical for the
operation of the networks, confirmed over thousands of trials with the
averaged data illustrated in the next few figures. First, gamma
oscillations only become clearly evident when the neurons leave their
spontaneous firing rate state and are driven by inputs to reach high
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firing rates. Second, at low values of xf, in the AMPA case
oscillations are present in both Net 1 and Net 2 but there is no
coherence between the oscillations in the two nets, no fixed phase
relationship. Thus information has been transmitted from Net 1 to
Net 2, and the firing rates in Net 2 D1 increased relative to those in
Net 2 D2, yet this occurred without coherent oscillations between the
two networks, which, as we shall see, only become established at
much higher values of xf than are needed for information transmission
from Net 1 to Net 2.
Next, further analyses of the performance found on single trials with

the different types of simulation are shown in Figs 3 and 4 to illustrate
the operation of the network. Then analyses based on 1000 trials for
each data point are shown in Fig. 5.
Figure 3 shows LFP frequency analyses for (A) the AMPA case

with xf = 0.45, (B) the AMPA case with xf = 0.03, and (C) the
NMDA case. The spectra are for the 500-ms time period in which
the decision is made. The AMPA case refers to simulations where the
gAMPA to gNMDA factor d was set to 0.1 to emphasize AMPA at
the expense of NMDA conductances, and to promote oscillations in
the gamma range. Figure 3A shows that, with xf = 0.45, oscillations
were present in both networks Net 1 and Net 2 in the gamma range of
50–100 Hz as shown by the PSD analyses (for the LFP power in Net 1
D1 and in Net 2 D1, the winning pool). (Although most of the power
was in the gamma range of 50–80 Hz in most simulations, it was

Fig. 2. A single trial of the simulation to illustrate the responses of the
network in the AMPA case as a function of time. The decision cues for Net 1
were switched on at time = 1.0 s and stayed on for the remainder of the trial.
xf = 0.03. Net 1 took its decision at 1.4 s, and Net 2 at 1.7 s. (A) Rastergram,
with each row of the rastergram providing the spike times for one of 30 neurons
in each pool. There is a 1-s period of spontaneous activity from 0 to 1 s, and
then the decision cues are applied to the neurons in pools D1 and D2 of Net 1
for the remainder of the trial. The lower four pools are for Net 1. NS,
nonspecific excitatory; Inhib – inhibitory; D1, D2, the decision pools for Net 1.
The upper four pools are for Net 2, with the pool names preceded by 2. (B) The
firing rates of the D1 neurons in Net 1 and in Net 2. (C) The spectral analyses
for this trial. (Top) Power spectral density (PSD) for the LFP in Net 1 D1. (The
plots are displayed with the same arbitrary maximum of 140.) (Upper middle)
PSD for the LFP in Net 2 D1 (the winning pool in Net 2). (Lower middle)
Coherogram between Net 1 Pool D1 and Net 2 Pool D1. (The coherogram is
the coherence which takes a value in the range 0–1 as a function of time.)
(Bottom) Phaseogram between Net 1 Pool D1 and Net 2 Pool D1. (The
phaseogram is the phase which takes a value in the range p to –p radians as a
function of time.)
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found that with xf = 0.45 the frequency was a little higher, and hence
the larger frequency range was used for the quantitative analyses.) The
CSM was large in the gamma range. At this value of xf = 0.45, the
phase (measured in radians) between the LFPs in Net 1 D1 and Net 2
D1 was locked close to zero. (In fact, not illustrated, the phase
between the spikes in Net 1 D1 and the spikes in Net 2 D1 was very
close to 0 radians, and the LFP phase illustrated corresponds to this
case.) The coherence between the LFPs in Net 1 D1 and Net 2 D1 was
high in the gamma range. In this case of AMPA domination and
xf = 0.45, oscillations occurred in both Net 1 and Net 2, and were
locked in phase. This was a true case of synchrony and coherence.

Figure 3B shows that in the AMPA case where the gAMPA ⁄ gNMDA

factor was set to 0.1, gamma oscillations were still present in Net 1
and Net 2 (as shown in the PSD analyses illustrated in Fig. 2C), but
with the lower value of xf = 0.03, the coherence between the LFPs in
Net 1 D1 and Net 2 D1 was low in the gamma range, and so was the
CSM. Moreover, the phase in the gamma range was no longer close to
zero, and was very variable within a trial and across trials. These
measures indicate that with this weaker value of the forward coupling,
synchrony was no longer present. [We note here that on single trials
the CSM (which when squared forms the non-normalized coherence)
was a better measure of coherence on a single trial than the coherence
measure itself, as the coherence measure is normalised by the product
of the PSDs of the two time-series and so can take high and misleading
values when either or both PSDs are low, that is, when either Net 1
and ⁄ or Net 2 is not oscillating. This is an important point when
interpreting neurophysiological studies that report coherence. We
further note that coherence indicates whether repeated estimates (in
our case, measures repeated at different times in the 500-ms analysis
window) of the cross-spectrum have consistent phases, but does not
indicate whether the phase is zero. We further note, as shown in
Fig. 5d, that the CSM measure does not take a zero value when the
two networks are not coupled by synapses.]

Figure 3C shows that in the NMDA case where the gAMPA ⁄ gNMDA

was set to its normal value for investigations of this network as shown
in Table 1, no gamma oscillations were present in Net 1 and Net 2 (as
shown by the PSDs). Accordingly, even with the high value of 0.45
for xf the CSM was very low in the gamma range and the gamma
range phase was variable and not locked close to 0 (though, as in
Fig. 3B, the coherence was not an especially good indicator of the lack
of phase-coupling in the gamma range due to its normalisation by the
PSDs). Thus there is no synchrony in the NMDA case of the two
networks, and no oscillations.

These analyses were extended to show how the oscillations and
synchrony if present developed during the time-course of a trial using

Slepian filters. Results of typical trials are shown in Fig. 4. Figure 4A
shows the analyses for the AMPA case with xf = 0.45. On the trial
illustrated, with this strong forward coupling xf of 0.45 (and backward
coupling xb set to 1 ⁄ 3 of this as for all the results described), Net 1
took its decision at�150 ms after the decision cues were applied, i.e. at

Fig. 3. Local Field Potential (LFP) frequency analyses for (A) the AMPA case
with xf = 0.45, (B) the AMPA case with xf = 0.03, and (C) the NMDA case
with xf = 0.45. The abscissa is the frequency in Hz. The spectra are for the
500 ms time period starting when the decision is made. Each set of plots shows:
Power Spectral Density = LFP power in Net 1 D1 and Net 2 D1, the winning
pool. Cross-Spectral Density Magnitude (CSM) of the LFPs between N1D1
and the winning pool in Net 2. The square of this is the unnormalised
coherence. Phase = phase (radians) between the LFPs in Net 1 D1 and Net 2
D1. (In the xf = 0.45 AMPA case shown in (A), the phase between the spikes
in Net 1 D1 and Net 2 D1 was very close to 0 radians.) Coherence = coherence
between the LFPs in Net 1 D1 and Net 2 D1. The results are each averaged over
1000 trials, except for the phase which is for a single trial.

Fig. 4. Spectral analyses as a function of time for a single trial. (A) The
AMPA case with xf = 0.45. Net 1 took its decision at 1.3 s and Net 2 at 1.3 s.
(B) The AMPA case with xf = 0.03. This trial is the same as that shown in
Fig. 2. Net 1 took its decision at 1.4 s and Net 2 at 1.7 s. (C) The NMDA case
with xf = 0.45. Net 1 took its decision at 1.3 s and Net 2 at 1.3 s. Top three
rows of plots show the abscissa is the trial time in s, and the ordinate is the
frequency in Hz. Top row shows coherograms between the LFPs in Net 1 D1
and Net 2 D1. Second row shows cross-spectrograms between the LFPs in
Net 1 D1 and Net 2 D1. Third row shows phaseograms between the LFPs in
Net 1 D1 and Net 2 D1. [In the 0.45 AMPA case shown in (A), the phase
between the spikes in Net 1 D1 and Net 2 D1 was very close to 0 radians.]
Fourth row shows black, the spike-triggered average (STA) between the spikes
in Net 1 D1 and the LFPs in Net 1 D1; red, the STA between the spikes in
Net 2 D1 and the LFPs in Net 2 D1. Bottom row shows black, the cross spike-
triggered average (cross-STA) between the spikes in Net 1 D1 and the LFPs in
Net 2 D1; red, the cross-STA between the spikes in Net 2 D1 and the LFPs in
Net 1 D1. The STA and cross-STA analyses are for the 512-ms time period in
which the decision is made.
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1150 ms into the trial, and Net 2 took its decision at approximately the
same time. The cross-spectrogram for the LFP showed an increase at
approximately the time of the decision, that is, when the neurons fired
fast as they entered the attractor. The oscillations in each of the
networks evident in the firing rates increased at approximately the same
time (not illustrated), that is, the spontaneous firing rate did not support
significant gamma oscillations. The coherogram also showed an
increase at the decision time. (When interpreting the exact timing of
events in Fig. 4, it is important to appreciate that the time window in
which the Slepian filters operated was 256 ms of data, with the results
plotted at the start of that time window. The values plotted at a point in
time thus reflect what happened in the following 256 ms.) The phase
analysis shown in Fig. 4A shows that the phase of the LFPs in Net 1
D1 and Net 2 D2 actually became locked close to 0 radians from�1.4 s
into the trial, that is, after the decision had been taken in both networks.
The STA within Net 1 D1 (i.e. the relation between the spikes in N1D1
and the LFP in N1D1) calculated in the 500-ms period starting at the
time at which the decision was taken showed a significant peak close to
0 ms, reflecting coupling between the spikes and the LFPs. (The strong
oscillations are indicated by further peaks away from the central peak.)
The same strong STA effect occurred in N2D1, the winning pool in
Net 2. The cross-STA from Net 1 to Net 2, and vice versa, also
indicate the strong phase-linked coupling between the networks. (The
cross-STA from Net 1 to Net 2 shows the LFP in Net 2 D1 that is
related to a spike in Net 1 D1, during the 500 ms decision period.) It is

important to note that none of the measures described showed any
relation to the decision-making if they were taken in the period before
Net 2 took its decision as indicated by an increase in firing rate in one
of its decision pools, even immediately before.
Figure 4B shows the analyses for the AMPA case with xf = 0.03

for a typical single trial. On this trial, Net 1 took its decision at
�400 ms after the decision cues were applied, i.e. at 1.4 s into the
trial, and Net 2 took its decision �300 ms later. (The decision time for
Net 2 was thus 300 ms). The cross-spectrogram for the LFP (scaled to
the same maximum as in Fig. 4A) showed a small increase in the
gamma range at approximately the time of the decision in Net 2, that
is, when the neurons fired fast as they entered the attractor, but the
coherogram showed little change, and there was no phase-locking
evident in the gamma range. The oscillations in each of the networks
evident in the LFPs increased to high values in each of the networks at
approximately the same time (not illustrated), and are evident in the
STA analyses shown in Fig. 4B. The cross-STAs from Net 1 to Net 2
and vice versa also indicate only weak phase-linked coupling between
the networks. Thus in this case, strong oscillations were present in
each of the networks separately, but with this lower value of xf = 0.03
there was no phase-locking or synchrony between the two networks
Net 1 and Net 2.
Figure 4C shows the analyses for the NMDA case with xf = 0.45

for a typical single trial. On this trial, Net 1 took its decision at
�300 ms after the decision cues were applied, i.e. at 1.3 s into the

Fig. 5. Performance of the network as a function
of the value of the forward coupling weight xf.
The spectral analyses were set to include the
gamma frequency-band in the range 50–100 Hz in
which oscillations were induced in the networks
when the gAMPA ⁄ gNMDA ratio was increased (the
AMPA case). The NMDA case is with the normal
value ratio of gAMPA to gNMDA as shown in
Table 1. (A) Information transmission between
Net 1 and Net 2. The measure is the Shannon
mutual information. (B) Percentage correct for
Net 2. (C) Coherence between Net 1 and Net 2.
(D) CSM between Net 1 and Net 2. (E) Cross
spike-triggered average Net 1 (spikes) to Net 2
(LFP). (F) The standard deviation of the phase in
the gamma frequency-band across trials. The low
standard deviation at xf = 0.45 for the AMPA case
reflects phase-locking.
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trial, and Net 2 took its decision �50 ms later. The cross-spectrogram
for the LFP (scaled to the same maximum as in Fig. 4A) showed no
effects, the coherogram showed no change, and there was no phase-
locking evident in the gamma range. There were no gamma
oscillations in either of the networks, and this is evident in the STA
analyses shown in Fig. 4C. The cross-STAs from Net 1 to Net 2 and
vice versa also indicate no phase-linked coupling between the
networks. Thus in this case, no gamma oscillations were present in
either of the networks separately, and even with a high value of
xf = 0.45 there was no gamma phase-locking or synchrony between
the two networks Net 1 and Net 2.

The time-course analysis of the spectra based on the LFPs in Fig. 4
shows that the oscillations started in a network at approximately the
time that a network took a decision for one of its attractor pools to fall
into a high firing rate decision state. As the gamma oscillations were
not apparent before this time, the analyses described next using 1000
trials for each data point started at the time that the second net took a
decision, and were for a 500-ms period. We did perform analyses for
earlier periods, including 400 ms before the decision in Net 2 was
reached until 112 ms after the Net 2 decision was taken, but no
gamma oscillation-related effects were found, as there were no gamma
oscillations evident even in the LFPs before the decision was reached
in Net 2, as illustrated in Fig. 2C. In particular, when the coherence
between Net 1 and Net 2 was measured in the period before Net 2
took a decision (in fact, in the 512-ms period starting 400 ms before
Net 2 responded), there was no measurable coherence different from
that in uncoupled networks that could have influenced the decision
in Net 2.

Consistent conclusions were reached by the transfer entropy and
power correlation analyses. The transfer entropy, based on the firing
rates of the N1D1 and N2 winning pools measured in the 500-ms
period in which Net 2 took its decision, was high (0.30 bits) in the
forward direction, and a little lower (0.28 bits) in the backward
direction (consistent with the fact that xb was always set to 1 ⁄ 3 of the
value of xf) in the AMPA case. These transfer entropy values are
consistent with those found by Buehlmann & Deco (2010), and
indicate that in the system described here, after the decision has been
taken, the short time-scale ongoing oscillations and firing rate
fluctuations are clearly evident. The transfer entropy values were
smaller when xf was smaller (0.015), as expected (0.23 vs. 0.25 bits
for forward vs. backward). The transfer entropy values were smaller in
the NMDA case (when xf = 0.45, 0.176 and 0.182 bits for forward
vs. backward), reflecting the lower gamma oscillations and therefore
lower rapid-time-scale interactions between Net 1 and Net 2. The
power correlation analyses (based on the LFPs) showed that during the
same period the power correlation was highest for zero phase. These
power correlation analyses are again consistent with those found by
Buehlmann & Deco (2010), and indicate that in the system described
here after the decision has been taken the short time-scale ongoing
oscillations and firing rate fluctuations are clearly evident. The power
correlation and STA analyses reflect what is measured in many
neurophysiological experiments (Fries, 2005, 2009; Gregoriou et al.,
2009).

The operation of the system as a function of the forward connection
strength xf is shown in Fig. 5. The spectral analyses were set to
include the gamma frequency-band in the range 50–100 Hz in which
oscillations were induced in the networks when the gAMPA ⁄ gNMDA

ratio was increased (the AMPA case). The information transmitted
(Fig. 5A) and the percentage correct (Fig. 5B) increased as xf was
increased from a low value of 0.015 up to a value of 0.09, by which
value the information transmission saturated at 1 bit (perfect decision-
making by Net 2) and the percentage correct saturated at 100%. The

information transmission and percentage correct curves as a function
of the forward connection strength xf were indistinguishable for the
AMPA (gamma oscillating) and NMDA (non-gamma-oscillating)
cases. Results are shown for values of xf of 0, 0.015, 0.03, 0.045,
0.06, 0.09, 0.15 and 0.45.
Figure 5C shows that the oscillations in Net 1 and 2 in the AMPA

case were almost independent as indicated by the gamma-band
coherence measure for the whole range of xf values up to and
including 0.09, the range in which the information transmission was
shown to be taking place to reach saturation. Moreover, the measured
coherence in this range was almost identical to that for the NMDA
case (Fig. 5C). (Because coherence is normalized by the power, the
values can be similar for the NMDA case without much gamma power
and the AMPA case with much gamma power. The coherence
provides a measure in the range 0–1 of whether there are consistent
phase relations in the different samples, in this case trials, between
Net 1 and Net 2. The CSM shown in Fig. 5D does reflect the non-
normalized gamma power. As shown in the Methods, the square of
this is the non-normalized coherence, and was a particularly useful
measure on single trials in these analyses, as a high value indicated
significant power in both Nets 1 and 2, as well as coherence.) In the
AMPA case, the coherence only increased significantly for high values
(relative to those needed for information transmission) of xf of 0.15
and 0.45. Also in the AMPA case, the non-normalized coherence also
only increased at values of xf > 0.09, by which value information
transmission was almost perfect. The implication is that information
transmission can occur in the network at much lower values of
connection strength than those necessary to support coherent oscilla-
tions between the networks. It is in this sense that there is
communication before coherence, that is, before the connections are
sufficiently strong to support coherent oscillations.
That analysis is supported by the cross-STA between spikes in

Net 1 D1 and the LFP in Net 2 D1 shown in Fig. 5E, which is a
sensitive measure of synchrony between neuronal populations
(Gregoriou et al., 2009). The cross-STA for the AMPA case at
xf = 0 indicates what would be measured by chance, and the measure
shows only a small increase for values of xf of 0.09 by which
information transmission saturates. The major part of the increase in
the cross-STA, reflecting increasing synchrony, occurs for xf values in
the range 0.09–0.45. The cross-STA is much smaller in the NMDA
case, reflecting the fact that in this case there are no clear LFP
oscillations in Net 2 to be in synchrony or not with spikes in Net 1.
This measure thus indicates that coupling of gamma oscillations
between the networks only becomes large after information transmis-
sion has saturated (the AMPA case), and is essentially absent in the
NMDA case even though information transmission is perfect.
The analysis is also supported by the phase analysis shown in

Fig. 5F. The standard deviation of the phases across trials is large
(close to 1.6 radians) when there is no coupling between the
networks, and remains high in the NMDA case when xf is increased.
In the AMPA case, significant phase-locking only becomes evident
at the very large connection strength xf value of 0.45, far beyond the
value of 0.015 at which significant information transmission occurs,
and the value of 0.09 at which the information transmission
saturates.
The decision times as a function of the forward coupling xf in

Fig. 6A show that the major decrease in the decision time took place
for values of xf £ 0.06. Within this range, for the AMPA condition
the coherence hardly changed, as shown in Fig. 5C. Similarly, the
CSM changed very little within this range of values of xf £ 0.06
(Fig. 6B). This is the range within which information was being
transmitted between Net 1 and Net 2. At higher values of xf the CSM
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increased in the AMPA case and the decision time decreased, as
shown in Fig. 6B. However, this effect was just related to the
somewhat higher firing rates that were present in the AMPA than in
the NMDA case, as shown in Fig. 6C. (It is well established that
factors that increase the firing rates of an attractor decision-making
network decrease the decision times; Rolls et al., 2010a,b). In fact,
taking a particular value of the firing rate such as 60 spikes ⁄ s in
Fig. 6C, it is seen that the decision time is in fact faster in the NMDA
(non-oscillating) than in the AMPA (oscillating) case. Thus the
presence of oscillations did not speed decision times in this set of
coupled networks. Further, taking the two highest values of xf, 0.45
produced similarly fast decision times in the NMDA and AMPA
networks (Fig. 6A) though the AMPA network, when in its synchro-
nous firing state, had much higher firing rates (Fig. 6C). (The fact that
the firing rates when in the attractor state were higher in the AMPA
case indicates that the compensation for the gAMPA vs. gNMDA change
in the AMPA-case networks described in Materials and methods,
which was designed to make the spontaneous firing rates similar when
the gAMPA ⁄ gNMDA ratio was changed, did not achieve this for the
much higher firing rates when in the attractor state.) Moreover, the
decision times did not depend on the oscillations per se, as shown by
the decision times in the NMDA case, which were independent of the
gamma range cross-spectral magnitude which remained close to 0 for
all decision times in the NMDA case (Fig. 6B).
Further evidence that the decision times within the range of values

of xf that influenced information transmission did not depend on
coherence is provided by the phase analysis shown in Fig. 6D for
xf = 0.03. This shows for 1000 trials that the decision time was not a
function of the gamma phase that happened to be present between
Net 1 and Net 2.
The implication is that the speed of information transmission, and

information transmission itself, do not depend on coherence or
synchrony (phase-locking) between two weakly coupled attractor
networks in which the coupling is nevertheless sufficiently strong to
support information transmission to 100% correct between the two
networks. The small increase in coherence at higher values of xf than
0.06, and even the phase-locking at xf = 0.45, appear just to reflect
the stronger connections between Net 1 and Net 2 after information
transmission has almost saturated.
Itmust be emphasized thatwe are considering here the transmission of

information about an external stimulus (k1) through one Net (1) to a
second (Net 2). This is not what was studied in previous work in which
effectively the influence of oscillations in one network on oscillations in
a second network has been shown to be phase-dependent, at least at high
values of xf (Buehlmann & Deco, 2010). Indeed, a considerable part of
the literature on oscillations involving LFPs and also spiking has
measured this type of influence, for example by the correlation between
two networks as a function of phase (Fries, 2005, 2009). We are
concerned with a different type of information transmission, about
external events through brain networks, in this paper.

Information transmission when the phase between two coupled
networks is externally controlled

The results described above show that the information transmission
occurs at values of the coupling xf that are much smaller than those
needed to produce marked coherence or synchrony. We were
nevertheless interested in investigating whether the relative phases
of Net 1 and Net 2, if coherence was present, might influence the
information transmission or the decision time. We therefore ran further
simulations where the external input to particular pools of neurons had
a 60-Hz sine wave modulating it. The modulation had a mean value of

0 (i.e. it was a modulation and not an addition) and amplitude (peak-
to-peak) equivalent to 0.4 spikes ⁄ s per synapse (in the context that the
external input apart from this was typically 3.05 spikes ⁄ s per
synapse). This modulation value of 0.4 spikes ⁄ s per synapse was
sufficient to influence the firing rates of the neurons in a pool, and to
influence the phase plots of the firing rates and the LFPs, as will be
shown. This value was also chosen to be relatively small, so as not to
impair the ability of the connections xf between the two networks to
produce information transmission.
Figure 7 shows a case in which we achieved in this way phase

control of the firing times of neurons in Net 1 pool 1 (N1D1) and
Net 2 pool 1 (N2D1). The phase control achieved is shown in
Fig. 7A (the phase applied was 180� apart) and Fig. 7C (0�).
Figure 7B is a polar plot showing that the mean decision time (across
1000 trials) as a function of the relative phases achieved in the
network of N1D1 vs. N2D1 did not affect the decision times. xf was
0.015, a value that does not saturate information transmission, so that
the network is sensitive to its important parameters. There was no
effect of the relative phases on either the information transmitted or
percentage correct. Thus in this well controlled system of two
networks, even when the phases of the two networks were locked by
artificial external control firing rates applied to each network, the
phase, and whether synchrony was present (as it was at 0�), had no
influence on the communication between the networks. Consistent
results, of the phase having no effect on decision times, were
obtained with xf = 0.15, and in this case the decision times were
�70 ms.
We did wish to test whether the phase of some neurons in the

network might influence the operation of the system, a topic on which
there has been much discussion in the literature (Fries et al., 2001;
Fries, 2009; Tiesinga & Sejnowski, 2010; Wang, 2010). We therefore
were keen to test a control case to show that, in our system, phase in
some parts of the network was an important factor in the operation of
the system, even if phase was not important in influencing the
transmission between two networks. We were able to influence the
decision times of the system if we controlled the phases of the Net 2
D1 neurons relative to the Net 2 GABA (N2GABA) neurons, using
the same amplitudes for the sine waves etc. as in Fig. 7. The results
are shown in Fig. 8. If the 60-Hz external inputs to these two pools
were in phase (0�), their firing was closely in phase, and as the phase
of the external sine waves was shifted, so it was possible to shift the
relative phase of the firing of N2D1 vs. N2GABA by a small amount.
The phase-locking close to 0� of these two pools of neurons was
associated with shorter decision times, as shown in Fig. 8, and with
longer decision times when the phases of the firing were shifted. This
shows that the relative phase of firing of some populations of neurons
in the system can influence the processing time. In this case, the
interpretation is that if the firing of the GABA neurons is shifted out
of phase with the firing of the N2D1 neurons, then shunting inhibition
arrives at the N2D1 neurons just when they may be about to respond
with an action potential, and so this reduces the responsiveness of
the N2D1 population. These experiments were performed with
xf = 0.015.
We performed another experiment to test whether the phase of the

firing of N2D1 relative to N1D1 might influence the speed of
information transmission between the two nets. We reasoned that any
effects in the speed with which the state of Net 1 affected Net 2
might depend on both nets already oscillating and on their relative
phases of coherent oscillations when a new input was applied to
Net 1. To test this hypothesis, we performed the following exper-
iment in which we started gamma oscillations in N1D1 and N2D1
with sine waves at 60 Hz applied from time = 0, and in which we

2700 E. T. Rolls et al.

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 36, 2689–2709



applied decision cues to N1D1 with k1 = 3.11 and k2 = 2.99 Hz per
external synapse from time = 0. As shown in the rastergrams in
Fig. 9a, N1D1 started firing within the first 500 ms, and the forward
connections with value xf = 0.09 from N1D1 to N2D1 started up an
attractor in N2D1 by �1000 ms. (The phase of firing of the N2D1
neurons relative to the N1D1 neurons was well controlled by the
applied sine waves, as shown by the finding that the mean phases of
the firing of N2 relative to N1 in the frequency range 50–70 Hz were
close to the externally applied phase differences of 0, p ⁄ 4, p ⁄ 2, and
3p ⁄ 4.) Then at time = 2000 ms we increased the firing rate of the
neurons in N1D1 (by changing k1 from 3.08 to 3.48 spikes ⁄ s per
synapse and k2 from 3.00 to 2.92 spikes ⁄ s per synapse to increase
the firing in N1D1; Fig. 9a). (x+ was 2.0, and kext to N2D1 and
N2D2 was held constant throughout each trial at 3.03 spikes ⁄ s per
synapse.) Fig. 9b shows that the phase in the gamma range of N2D1
relative to N1D1 did not significantly affect the latency for an
increase in firing rate in N2D1 to be found. [The latency of the
change in firing rate in N2D1 was measured as the first 50-ms firing
rate time bin at which the value was significantly higher (P < 0.005)
than the firing rate in the period of time = 1650–2000 ms which
immediately preceded the change in k to increase the firing in N1D1.
Typical firing rates in N2D1 were 58 spikes ⁄ s before
time = 2000 ms and 64 spikes ⁄ s after the effect had become evident
in N2D1.]

The implication is that, in this system, the speed at which one
network can cause a change in firing rate in a second weakly
connected network (typical of the cortex) is not influenced by the
phase of the firing when both networks are oscillating in the gamma
range.

Information transmission to a non-attractor network

The results described above have been for the case when Net 2
(and also Net 1) were decision attractor networks. We also
investigated cases where Net 2 was not an attractor network, but
which had firing rates that reflected information transmitted from
N1D1 to N2D2.

First, we examined a case where x+ in Nets 1 and 2 was reduced to
1.7, insufficient to maintain a high firing rate attractor state. Under
these condition, due to the values of k1 = 3.11 and k2 = 2.99 Hz per
synapse applied to N1, pool N1D1 fired at �6 spikes ⁄ s and pool
N1D2 at �2 spikes ⁄ s. For the range of values of the connectivity
between the two networks xf up to 0.15, pool N2D1 fired at up to
3 spikes ⁄ s and pool N2D2 at �2 spikes ⁄ s. Information transmission,
measured as described in Materials and methods (mutual information
section) occurred as described in the attractor case, but there were no
gamma oscillations in either network and thus no gamma synchrony.
In further investigations in which the phase of the two networks was
controlled by external sine waves applied at 60 Hz, again no effect
was found on information transmission or response time (measured as
described in Materials and methods).

Second, we repeated these investigations but with x+ in Net 1 set to
2.1 to produce a high firing rate attractor, and x+ in Net 2 set to 1.3 so
that it did not enter a high firing rate attractor, but had rates which
could reflect the large difference in the firing rates in Net 1 (typically
50 spikes ⁄ s for N1D1 and 3 spikes ⁄ s for N1D2). Gamma oscillations
occurred in Net 1. When the phase of the oscillations was controlled
by externally applied sine waves applied to N1D1 and N2D1, there
was still no significant effect on information transmission or on
response time as shown in Fig. 10. Indeed, an anova on the response
times for 800 trials with four phases showed F3,3196 = 0.306,
P = 0.82. Even comparing the decision times for phase = 0� vs.

phase = 90�, F1,1598 = 0.637, P = 0.42. The phase control was good,
as shown by the spectrograms in Fig. 11A for phase = 0� and
Fig. 11B for phase = 180�. The phase was measured from the spiking,
though similar effects were found when measured from LFPs. The
spectral analyses show that N1D1, with its 60-Hz sine waves applied
from time = 0 went into a high firing rate attractor state with much
gamma power at �1400 ms into the trial. The CSM between N1D1
and N2D1 was low. Two separate simulation runs (0.03a and 0.03b)
with 1000 trials each were performed with xf = 0.03, as this was
within a sensitive range for information transmission, which averaged
close to 0.35 bits and 82% correct. Typical mean rates for each neuron
in N2D1 were 2.3 spikes ⁄ s, and in N2D2 1.9 spikes ⁄ s. The results of
simulation runs of 1000 trials with xf = 0.015 and 0.06 are also
shown in Fig. 10, and the implications are similar.

Discussion

One of the important conclusions is that information transmission
between coupled cortical networks may occur at values of the
interconnection strengths between the networks that are much lower
than those necessary to induce synchronization. This is shown by the
results in Fig. 5B,C. Figure 5B shows that the percentage correct of
the second network rises to very close to 100% whereas the coherence
remains at the ‘chance’ value that is measured when there is no
coupling at all between the networks (xf = 0, the first point on the
x-axis) for values of xf up to 0.09 (the first three data points > 0 in
Fig. 5). In this sense communication occurs before coherence. The
point is fully supported by the information transmission values shown
in Fig. 5a. Coherent oscillations only occur when much higher values
of the synaptic coupling strength between the networks is present, e.g.
xf = 0.45 (Fig. 5C). Thus information transmission between coupled
networks that model pairs of interconnected networks in the same
cortical area or in different cortical areas occurs at much lower values
of the synaptic coupling strengths than are necessary to induce
synchrony of gamma oscillations.
We emphasize that we are investigating a biologically realistic

situation in which there are firing rate differences between the
neuronal populations that are part of the encoding of the information
to be transmitted, for differences in firing rates between different
neurons are part of the normal representation of information in cortical
areas including the inferior temporal visual cortex, hippocampus,
orbitofrontal cortex, anterior cingulate cortex and insular taste cortex
(Rolls, 2008b; Rolls & Treves, 2011). Hence, if one were to argue that
coherence was only important in information transmission when there
were no firing rate differences in the transmitting populations of
neurons representing the different stimuli, the hypothesis would be so
restrictive that it would apply to rare cases in the cerebral cortex.
Another important conclusion is that even when synchrony was

artificially induced by external inputs, the information transmission
between the two coupled networks and the speed of response were not
influenced by the phase of their gamma oscillations (Fig. 7). In a
positive control condition, we were able to show that the relative phase
of the gamma oscillations between the GABA inhibitory interneurons
and the excitatory cells within the same network did influence the
decision time (Fig. 8).
Another conclusion is that the same findings and conclusions follow

for neural systems that have quite different dynamics and fluctuations.
In the AMPA case when there are gamma oscillations and the
dynamics are fast, the result was that the information transmission
between the coupled networks was not affected by the coherence in
the gamma range of the two networks. In the NMDA case where the
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dynamics are slower and there are no gamma oscillations, information
transmission occurred in quantitatively the same way as when there
were oscillations in the AMPA case, as shown by the similar
percentage correct and information transmission in the AMPA and
NMDA scenarios as a function of the synaptic coupling xf between
the networks (Fig. 5).
We note that three ways have been described of producing

synchrony in a single network or ‘cortical minicolumn’ (Tiesinga &
Sejnowski, 2009). First, by inheritance of synchrony from previous
areas via the feedforward projection; second, by activation of
inhibitory networks via the interneuron gamma (ING) mechanism;
and third, by activation of reciprocally connected networks of
excitatory and inhibitory neurons via the pyramidal–interneuron
gamma (PING) mechanism within a single network (Tiesinga &
Sejnowski, 2009). However, the results of such analyses (Tiesinga &
Sejnowski, 2009) apply to what happens within a single network (or
minicolumn), for example within Net 2 in Fig. 1. We instead in this
paper examine a different and new situation highly relevant to cortical

function, the information transmission between two networks (Net 1
and Net 2 in Fig. 1) or minicolumns.
The results found here show the way in which the information

transmissionbetween two coupled networks is influencedby the strength
of the associative synaptic coupling xf between the two networks
(Fig. 5A,B). Relatively weak synaptic connections between the two
networks relative to those within the network required to maintain an
attractor state are sufficient for the information transmission. Whether
the network is having gamma oscillations (the AMPA dominated case)
or not (the NMDA case) does not influence the information transmission
(Fig. 5A,B). Thus oscillations, coherence and synchrony are not
necessary for information transmission in these networks.
The system we have investigated thus operates with strong

coupling within each network (e.g. within Net 1 and within Net 2)
but relatively weak coupling between the two networks. This is
exactly the system that applies in the cortex (Rolls & Treves, 1998;
Renart et al., 1999a,b), where the connections between networks must
be less than in the order of 0.01 of the internal recurrent collateral
strength for the two networks to have the potential to operate
separately (see further Rolls & Treves, 1998; Rolls, 2008b).
Consistently, in the investigations described here, information trans-
mission between the coupled nets took place when the relative value
of the inter-network connectivity to the intra-network (intra-decision-
pool) connectivity was 0.015 ⁄ 2.1 = 0.007. Indeed, in the phase-
control experiments, it was difficult to move the phases of the
oscillations between the D1, D2 and GABA neurons and LFPs within
Net 1 or Net 2, due to the strong recurrent connection weights
between the within-network pools of neurons. However, it was
possible to move the phase of the oscillations between Net 1 and
Net 2 (Fig. 7), as the connections between the two networks xf and
xb were relatively much weaker.

Fig. 6. Decision time for Net 2 as a function of
(A) the value of the forward coupling weight xf,
(B) the CSM and (C) the firing rate in the winning
pool in Net 2. (D) The relation between the
decision time and the gamma phase relation
(radians) between Net 1 and Net 2 for 1000 trials
with xf = 0.03. A quadratic fit is shown.

Fig. 8. Decision time with phase control. The mean decision time (ms; across
1000 trials) as a function of the relative phases (in degrees) of the firing rates in
pools N2D1 and N2GABA. The phase shift was achieved by applying 60-Hz
sine waves to the neurons in Net 2 pool 1 (N2D1) vs. the Net 2 GABA pool
(N2GABA). xf was 0.015.
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We emphasize that even when oscillations are present (the AMPA
case), phase-locking and thus synchrony only become strong at the
highest value of xf, 0.45 (Fig. 5F) whereas information transmission
has saturated at 1 bit with xf values of 0.09 (Fig. 5A,B). Even at
xf = 0.15 and 0.09, there is only a limited degree of phase coupling
(Fig. 5f), coherence (Fig. 5C), CSM (Fig. 5D) or cross-STA (Fig. 5E).
Thus information transmission saturates at much lower values of the
coupling between these neural systems (Nets 1 and 2) than are needed
to induce coherence and synchrony in networks that are oscillating. In
this sense, ‘communication occurs before coherence’.

The implication of the findings in Fig. 6 is that the speed of
information transmission (as well as information transmission itself)
does not depend on coherence or synchrony (phase-locking) between
two weakly coupled attractor networks in which the coupling is
nevertheless sufficiently strong to support information transmission to
100% correct between the two networks. The small increase in
coherence at higher values of xf than 0.06, and even the phase-locking

at xf = 0.45, appear just to reflect the stronger connections between
Net 1 and Net 2, after information transmission has almost saturated.
Further evidence that the decision times within the range of values ofxf

that influenced information transmission did not depend on coherence
is provided by the phase analysis shown in Fig. 6D for xf = 0.03. This
shows for 1000 trials that the decision time was not a function of the
gamma phase that happened to be present between Net 1 and Net 2.
It must be emphasized that we are considering here the transmission

of information about an external stimulus (k1) through one net (1) to a
second (Net 2). This is different from and extends what has been
found in earlier work. In that earlier work, the influence of oscillations
in one network on oscillations in a second network has been shown to
be phase-dependent, at least at high values of xf (Buehlmann & Deco,
2010). Indeed, a considerable part of the literature on oscillations
involving LFPs and also spiking has measured this type of influence,
for example by the power correlation between two networks as a
function of phase, and by the STA (Fries, 2005, 2009). Those findings
were replicated in the present findings. For example, considering the
period in which a decision had just been taken, the power correlation
between the LFPs in Nets 1 and 2 was maximal at zero phase, and the
transfer entropy values were high, in the AMPA case. This indicates
that ongoing fluctuations in the firing rates, including those produced
by oscillations, are present in this network when high firing rate
decision states are present in both Net 1 and Net 2. In this paper we
have taken matters forward by asking a different question, whether the
information transmission about external events through connected
brain networks, which is prototypical of the function of cortical
neuronal networks (Rolls, 2008b), is influenced by the oscillations and
their phase in the coupled networks. The results of this new type of
analysis presented here indicate that this type of information
transmission in this prototypical case of two coupled networks is
not influenced by oscillations or by their phase if oscillations are
present, nor is the speed of information transmission. We believe that
this is the first time this has been measured in a highly defined model
system. We suggest that it will be important to measure the role of
oscillations in this scenario in future in neurophysiological experi-
ments. We note that the system we investigated is two connected
integrate-and-fire networks, and that the effects found apply to that
system and leave open the possibility that communication through
coherence, in the strong, information transmission, sense analysed
here, may be found in other model networks and in the brain.
However, the model described here is rather prototypical of connected
cortical networks (Rolls, 2008b).
It was possible that different effects would be found if for example the

communication is to a network that does not enter a categorical, decision-
related state. In this case, the information transmission was measured by
the mutual information between the stimulus s applied to the first
network and the firing rates r in the secondnetwork.We found that in that
case the information transmission was still high at low values of the
forward coupling xf between the two networks that were insufficient to
produce phase-locking, and that the information transmission and the
response times were not affected by the phases of gamma oscillations
induced in the two networks Net 1 and Net 2 (Figs 10 and 11).
We emphasize that the model described here is representative of the

operation of the cerebral cortex in a number ofways. First, Net 1 showed
a considerable change in its firing rate when it responded to its input, as
illustrated in Fig. 2 in which the spontaneous rate of a single neuron was
3 spikes ⁄ s and the firing rate of the same neuron when N1 was
responding to the inputs it received was �40 spikes ⁄ s. Such large
changes in firing rate are found in many cortical areas when neurons
respond in the awake behaving monkey to effective stimuli (Rolls &
Treves, 2011). For example, when neurons in the inferior temporal

Fig. 9. The response time (± SEM) for Net 2 to increase its firing rate after an
increase in the firing rate of Net 1 produced at time = 2000 ms. Both nets were
made to oscillate by increased AMPA conductances (d = 0.1), the
Dk = 0.04 spikes ⁄ s per external synapse applied to Net 1, and the connections
xf = 0.09 from N1D1 to N2D2. At time = 2000 ms the firing rate in N1D1 was
increased by increasing k1, as shown in the rastergrams in (A). (B) The time
for a change in the firing rate in Net 2 as a function of the LFP phases of Net 2
relative to Net 1 produced by externally applied sine wave modulation in the
gamma range at 60 Hz.
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visual cortex respond with sparse distributed tuning to objects or faces,
the firing rates of single neurons to the most effective stimuli suddenly
increase with latencies of typically 90–100 ms to 50–100 spikes ⁄ s
(Rolls&Tovee, 1995; Tovee&Rolls, 1995;Rolls et al., 1997a,b; Booth
& Rolls, 1998; Rolls et al., 2003b; Rolls et al., 2004; Rolls & Treves,
2011; Aggelopoulos et al., 2005; Aggelopoulos & Rolls, 2005). This
happens for example when a saccade occurs to fixate an effective
stimulus in a complex natural scene (Rolls et al., 2003a). In the primary
taste cortex in the insula and adjoining frontal operculum, neurons
typically increase from very low spontaneous rates to firing rates of 20 or
more spikes ⁄ s when an effective taste or oral texture or temperature
stimulus is delivered (Scott et al., 1986; Yaxley et al., 1990; Verhagen
et al., 2004; Kadohisa et al., 2005). The same happens in the secondary
taste cortex and other regions of the orbitofrontal cortex (Rolls et al.,
1989, 1990, 1996c, 1999, 2003c, 2010c; Verhagen et al., 2003;

Kadohisa et al., 2004), and in the tertiary taste cortex in the anterior
cingulate cortex (Rolls, 2008a). The same happens in the secondary
olfactory cortex in the orbitofrontal cortex (Critchley & Rolls, 1996a,b;
Rolls et al., 1996a,b). Neural responses in the same range are also found
to familiar visual stimuli in the perirhinal cortex (Hölscher et al., 2003),
to head direction in the presubicular cortex (Robertson et al., 1999), and
to fixated visual stimuli in the parietal cortex area 7 (Rolls et al., 1979).
Thus large changes in firing rate of the type modelled in this
investigation are found in many cortical areas, and this is the
quantitatively important way in which information is encoded in
the cerebral cortex (Rolls, 2008b; Rolls & Treves, 2011). Second, the
cerebral cortex is characterised by short-range excitatory recurrent
collaterals between nearby pyramidal cells, and by longer-range
connections, typically to and from the next layer in a cortical hierarchy
(Rolls, 2008b; Chapter 1). The short-range connections are modelled by

Fig. 10. Information transmission from Net 1 with gamma oscillations to Net 2 when Net 2 is operating without a high firing rate attractor state, as a function of the
phase between the two networks controlled by external sine wave rate modulation at 60 Hz (which started at time 0). Results are shown for values of the forward
coupling weight xf 0.015, 0.03 (two separate runs of 1000 trials each labelled 0.03a and 0.03b), and 0.06. (A) Rastergram of a typical trial with phase = 0.
(B) Information transmission for different simulation runs of 1000 trials each. The information was measured by the decoding method from the firing rates for these
plots using Eqn 15, and from the firing rates directly using Eqn 16 where labelled ‘0.03 Rate’ (see Materials and methods). (C) Percentage correct (i.e. which Net 2
pool showed a significant increase in its firing rate after N1D1 increased its firing rate). (D) Response time ± SE calculated over 800 trials for a significant increase in
firing in N2D1 relative to N2D2.

Fig. 7. Decision time with phase control. (B) The mean decision time (ms; across 1000 trials) as a function of the relative phases of Net 1 D1 to Net 2 D2 produced
by 60-Hz modulatory sine waves applied to the external inputs influencing the neurons in Net 1 pool 1 (N1D1) and Net 2 pool 1 (N2D1) through kf = 0.015.
(A) Phase at different frequencies as a function of time in the trial showing that, after the decision cues and the external sine waves are applied with a phase of
180� starting at 1000 ms, the relative phases of the firing rates of N1D1 and N2D2 are well separated. (C) Phase at different frequencies as a function of time in the
trial, showing that after the decision cues and the external sine waves are applied with a phase of 0� starting simultaneously at 1000 ms, the relative phases of the
firing rates on N1D1 and N2D2 are close to 0� apart. Phase control of the firing of N1D1 and N2D2 did not affect the decision times.
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Fig. 11. Spectral analyses as a function of time for a single trial for the phase control investigation when Net 2 is operating without a high firing rate attractor state.
These spectral analyses are for the data shown in Fig. 10. (A) Gamma phase control at 60 Hz applied to N1D1 and N2D1 with a phase lag of 0�. (B) Gamma phase
control at 60 Hz applied to N1D1 and N2D1 with a phase lag of 180�. The results shown are for the AMPA case with xf = 0.06. Top: coherogram between the LFPs
in Net 1 D1 and Net 2 D1. Plot 2: cross spectrogram between the LFPs in Net 1 D1 and Net 2 D1. Plot 3: phaseogram between the firing rates in Net 1 D1 and Net 2
D1. Plot 4 black: the spike-triggered average (STA) between the spikes in Net 1 D1 and the LFPs in Net 1 D1; red: the STA between the spikes in Net 2 D1 and the
LFPs in Net 2 D1 (there were too few spikes in Net 2 for a meaningful plot). Plot 5 black: the cross spike-triggered average (cross STA) between the spikes in Net 1
D1 and the LFPs in Net 2 D1; red: the cross STA between the spikes in Net 2 D1 and the LFPs in Net 1 D1 (there were too few spikes in Net 2 for a meaningful plot).
The STA and crossSTA are for the 512 ms time period starting at t = 2000 in the trial, i.e. 1000 ms after the cues have been applied to N1 D1, with it entering an
attractor state at approximately 500 ms later, at t = 1300 ms into the trial.
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the recurrent collaterals within a network and the longer-range
connections by the connections between Nets 1 and 2. Third, the
connections in the backward direction end on the apical dendrites of
cortical pyramidal cells in layer 1, and are therefore likely to be weaker
than and shunted by the forward connections onto a pyramidal cell,
which synapses onto the parts of dendrites closer to the cell body (Rolls,
2008b; Section 1.11, pp. 31–36). That is also part of what we modelled.
Fourth, the connections between cortical areasmust be sufficiently weak
that connected cortical networks can have separate attractor states,
otherwise thememory capacity of thewhole of the cerebral cortexwould
be set by the number of recurrent collateral connections onto any one
neuron in any one cortical area (O’Kane & Treves, 1992; Rolls, 2008b;
Chapter 1). That also is part of what we modelled, by having weaker
excitatory connections between the two connected networks than within
each of the networks. Fifth, we not only modelled the situation in which
the second network entered a decision attractor state, as happens in
decision-making and memory recall parts of the cortex (Rolls & Deco,
2010; Deco et al., 2012; see also Figs 2–9), but also the situation in
which the second network does not enter an attractor state but is still
influenced by the inputs from the first network (Figs 10 and 11). Sixth,
we modelled a dynamically plausible system with integrate-and-fire
neurons and dynamicallymodelled synapses that allowed the generation
of gamma oscillations by reducing the gNMDA ⁄ gAMPA synaptic
conductance ratio. Thus the model described here is representative of
the operation of the cerebral cortex in a number of key ways. Further,
attractor models have been applied to many aspects of cortical function
(Wang, 2008; Rolls & Deco, 2010; Deco et al., 2012), and the model
described here is a generic attractor model.
The following points show that the integrate-and-fire model used in

the present research is appropriate for modelling the effects of gamma-
band activity during cortical communication.
First, the model we have described and with which we obtained

the findings here is not only generically, as just described, an
appropriate model that captures important properties of cortical
architecture, but also has been applied to and accounts for much
experimental data on cortical neuronal activity, and in this sense too
is an appropriate model for analysing communication between
cortical networks. For example, this integrate-and-fire model
accounts for the activity of prefrontal cortex neurons during the
switching of attentional tasks in which there is a delay (Deco &
Rolls, 2003). The same integrate-and-fire model can account for the
responses of neurons in V2 and V4 during top-down attentional bias
(Deco & Rolls, 2005a). The same integrate-and-fire model can
account for the responses of neurons in the ventral premotor cortex
and related areas during sequential vibrotactile decision-making
(Deco & Rolls, 2006; Deco et al., 2010, 2012; Martinez-Garcia
et al., 2011). The same model makes predictions, confirmed in fMRI
investigations, about neuronal and synaptic activity and thus fMRI
BOLD signals in the medial prefrontal cortex area 10 during
decision-making tasks (Rolls et al., 2010a,b).
Second, because the integrate-and-firemodel hasAMPA,NMDAand

GABA receptors, each with their different time constants, the effects of
which are modelled by the dynamics of the synapses (Eqn 10), then
gamma oscillations can be facilitated by reducing the ratio gNMDA ⁄ -
gAMPA as described here and by Buehlmann & Deco (2010).
Third, we showed that the same effects were found, that commu-

nication occurred before gamma coherence was induced by increasing
the synaptic coupling between the networks, both when the receiving
network operated as an attractor decision-making network (Figs 2–9)
and when it operated as a network without a decision state in which
the firing rates of the neurons in Net 2 continuously varied with the
firing rates in Net 1 (Figs 10 and 11).

Fourth, we showed thatwhen the networkwas in a spontaneous firing-
rate state, before stimuli were applied, then no gamma oscillations were
present. The gamma only started in the networks when inputs produced
high firing rates (in practice typically 20 spikes ⁄ s or higher). We were
able to show this by the use of the multitaper time spectrograms (Fries
et al., 2008; Mazzoni et al., 2008) shown for example in Figs 4 and 11,
which are important during neurophysiological investigations of cortical
communication to examine exactly when gamma coherencemay start in
relation to the transmission of information. Indeed, that is one of the
important points and predictions for neurophysiological investigations
that arise from the present work – gamma oscillations and coherence
with input networks are predicted not to be present in receiving networks
when they are in the spontaneous firing-rate state, and may only arise
after the receiving network had increased its firing rate as a result of the
information transmission. In this situation the research described here
makes the important point that information transmission can occur with
synaptic connection strengths between networks and signal strengths in
the first network thatmay not be sufficient to produce coherence between
the networks. It will be important to test that prediction neurophysio-
logically, taking care with spectrograms and coherence analysis as a
function of time to measure when coherence may start between the
networks in relation to when the second network shows influences from
the first network and thus information transmission. Indeed, at least part
of what is predicted, and thereby the applicability of themodel described
here, is already known – neurophysiological investigations have shown
that cortical networks in V4 have little gamma-band oscillation (30–
70 Hz) in the spontaneous firing-rate state, and gamma oscillations only
become pronounced when the neurons have been induced to increase
their firing rates by an input stimulus (Fries et al., 2008). It is exactly this
issue that is at the heart of this paper – if coherence becomes present
between cortical networks, does it just reflect information transmission
that has already occurred and has produced high firing rates in two
strongly coupled networks which then begin to oscillate? If coherence
between neurons increases with for example attentional modulation
(Fries et al., 2008), is this effect distinct from effects of firing rates, with
higher firing rates tending to be related to more coherence, as described
here? However, we note that in the present work we have gone beyond
previous neurophysiological investigations that described spike coher-
ence within networks in V4 (Fries et al., 2008) to a situation in which
information communication between different networks is being
investigated, in the present investigation from Net 1 to Net 2.
We note that correlative evidence suggesting communication

through coherence (Fries, 2005, 2009), such as the finding that
gamma-band synchronization predicts speed of change detection
(Womelsdorf et al., 2006) and selective attention (Fries et al., 2008),
must be carefully evaluated in the light of the present findings. For
example, gamma synchronization tends to become high when the
coupling between networks is increased to high values (Fig. 5). This
could be produced by any change such as increased attention or
arousal on some trials which influenced synaptic transmission, for
example increasing synaptic transmission by the release of acetylcho-
line, which would effectively increase the synaptic coupling between
networks by reducing synaptic adaptation (Rolls, 2008b). However, in
addition, a change that was associated with increasing the synaptic
coupling xf and xb in our simulations was that the firing rate was also
increased (Fig. 6), and that alone is an important factor that can
increase the speed of information processing and decrease decision
times (Rolls, 2008b; Rolls et al., 2010a,b; Rolls & Treves, 2011). For
these reasons, care must be taken before concluding that synchroni-
zation affects even the speed of information transmission, as well as
the information transmission, as the underlying causal factors
including any differences in firing rates must be analyzed. In the
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network described here, because the parameters were under full
control we were able to test whether in this system coherence
facilitates communication as measured by information transmission
and the speed of processing, and found that information transmission,
and fast processing, occur before coherence sets in when oscillations
are present (the AMPA case), and can occur without oscillations or
synchrony just as well (the NMDA case; see Fig. 5). Further, even on
trials when phase synchronization was present, the synchronization
was delayed to be often 100 ms or more later than the decision time.
Running correlations between the gamma-filtered LFPs in Net 1 and
Net 2 confirmed this. This makes an important point – it is important
to measure the oscillations and synchrony just at the time that the
information transmission is occurring, not some time after that, as
oscillations, and synchrony if present, occurred only when the firing
rates of the neurons were becoming high in the attractor state, when
the transition had already occurred from the spontaneous firing rate
state. In the light of the present studies, further neurophysiological
studies are needed to test whether synchrony plays a causal role in
information transmission and the speed of information processing.

The results described here are consistent with previous studies
which showed that fast ongoing fluctuation effects in model and real
neural systems can be reflected in measures such as the power
correlation, the spike-triggered average and the transfer entropy, of the
neuronal (including multiple unit) activity, and the LFPs (Fries, 2005,
2009; Womelsdorf et al., 2007; Buehlmann & Deco, 2010). What is
new about the present investigation is that we measured how
information transmission about an external stimulus from one network
to a second network, i.e. information about which stimulus has been
presented, is influenced by gamma oscillations and synchrony. We
found in the system analysed that, at values of the coupling strength
between the two networks that were sufficient for information
transmission in this strong sense relevant to brain function, coherence
was not present and phase did not affect the speed of information
transmission, even though gamma oscillations were present. Thus
communication in this strong sense of information transmission about
an external event did not need coherence, and was not affected by the
phase if coherence was present. The results were found for a simple
and clearly defined model of coupled cortical attractor networks, and
do not necessarily apply to all systems of coupled networks.
Communication through coherence may be found in other scenarios.

The findings suggest that experimental investigations of whether
information transmission in this strong sense is influenced by the
coherence of oscillations, if oscillations are present, may be important
for analysing the role of oscillations in information processing in the
brain. The finding that gamma oscillations are not present during
spontaneous firing, and only start in Net 2 when the neurons increase
their firing rates, is illustrated by the single-trial type of analysis shown
in Fig. 4. However, when the Net 2 D1 neurons selectively increase
their firing rates the decision has effectively been taken, that is, the
bifurcation has been crossed. This is one of the implications of the
investigations described here – great care has to be taken using single-
trial analyses with neurophysiological data to measure exactly when
the gamma oscillations start, and also when any synchrony starts that
may be present, in relation to the time of the decision or more
generally of the information transmission.
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